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The blockchain technology, initially created for cryptocurrency, has been re-purposed for recording state
transitions of smart contracts — decentralized applications that can be invoked through external transactions.
Smart contracts gained popularity and accrued hundreds of billions of dollars in market capitalization in
recent years. Unfortunately, like all other programs, smart contracts are prone to security vulnerabilities
that have incurred multimillion-dollar damages over the past decade. As a result, many automated threat
mitigation solutions have been proposed to counter the security issues of smart contracts. These threat
mitigation solutions include various tools and methods that are challenging to compare. This survey develops
a comprehensive classification taxonomy of smart contract threat mitigation solutions within five orthogonal
dimensions: defense modality, core method, targeted contracts, input-output data mapping, and threat model.
We classify 133 existing threat mitigation solutions using our taxonomy and confirm that the proposed five
dimensions allow us to concisely and accurately describe any smart contract threat mitigation solution. In
addition to learning what the threat mitigation solutions do, we also show how these solutions work by
synthesizing their actual designs into a set of uniform workflows corresponding to the eight existing defense
core methods. We further create an integrated coverage map for the known smart contract vulnerabilities
by the existing threat mitigation solutions. Finally, we perform the evidence-based evolutionary analysis, in
which we identify trends and future perspectives of threat mitigation in smart contracts and pinpoint major
weaknesses of the existing methodologies. For the convenience of smart contract security developers, auditors,
users, and researchers, we deploy a regularly updated comprehensive open-source online registry of threat
mitigation solutions.
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1 INTRODUCTION
Blockchain is a decentralized network that sustains distributed records stored in immutable blocks
to form an ever-growing chain. In one decade, blockchain technology has evolved from the ledger
of cryptocurrency (e.g., Bitcoin, Monero) to the decentralized computing platform (e.g., Ethereum,
EOS) that allows the deployment and execution of smart contracts. Smart contract is a decentralized
program deployed on a blockchain that enforces the execution of protocols and agreements without
involving any third party or establishing a mutual trust [144]. A smart contract provides a set of
functions to be called via transactions and executed by the blockchain’s virtual machine (VM).
Most smart contracts are written in high-level special-purpose programming languages, such as
Solidity, JavaScript, or Vyper, and compiled into the blockchain VM bytecode. For example, the
Ethereum Virtual Machine (EVM) is the blockchain VM for executing smart contracts on the
Ethereum platform1. An important feature of smart contracts is their ability to perform financial
operations with cryptocurrency and valuable custom tokens (e.g., ERC20, ERC721). As of March
2022, the total market capitalization of smart contracts exceeds 300 billion USD [4].

The large amounts of valued assets stored and transacted by smart contracts made them lucrative
targets for attackers. Numerous security vulnerabilities and attacks on Ethereum smart contracts
have been hampering their widespread adoption [73, 138]. In the past few years, exploitations of
these vulnerabilities caused hundreds of millions of dollars in damages. For example, in June 2016,
about $150 million were stolen from the popular DAO contract [69]. In July 2017, about $30 million
were stolen from the Parity multi-signature wallet [41]. Not long after that, a bug in the same
multi-signature wallet caused the freeze of about $280 million [45].

A large number of approaches and tools have been developed to address different types of smart
contract security issues. In this work, we use the term threat mitigation solutions to describe the full
spectrum of the active defense and passive preventative solutions aiming to reduce or eliminate
the threat associated with the exploitation of security vulnerabilities in smart contracts. These
solutions include both academic research efforts as well as commercial and open-source software
products.
Some surveys have been published that summarize vulnerabilities and attacks in smart con-

tracts [30, 99]. Furthermore, the Smart Contract Weakness Classification and Test Cases database,
also known as the SWC Registry [18], identifies and describes 37 classes of known smart contract
vulnerabilities (as of March 2022). However, all the existing ways of systematizing smart contract
security knowledge focus primarily on vulnerabilities and attacks, paying very little or no attention
to the broad swath of defense and prevention mechanisms developed in the past decade. In this
work, we bridge the gap in the systematization of the threat mitigation solutions via the following
four steps: developing classification taxonomy, synthesizing design workflows of core methods
of threat mitigation, creating the map of vulnerability coverage, and conducting an evolutionary
analysis.
Step I: Taxonomy. The smart contract threat mitigation constitutes a diverse set of efforts, so
finding a uniform organizational methodology for all these solutions poses a major challenge. These
solutions employ a variety of techniques, such as symbolic execution [119, 125], formal verifica-
tion [47], static analysis [44, 175], to name a few. Some of these solutions target specific vulnerabil-
ities, such as reentrancy [132] or integer overflow [141], while others are general-purpose [149].
Some threat mitigation solutions aim at detecting vulnerabilities [111], while others focus on
verifying the safe property of a smart contract [129]. In other words, all these solutions vary within
multiple dimensions. In this survey, we formalize these dimensions and create a comprehensive

1Although it is primarily associated with Ethereum, EVM has also been adopted by some other blockchain platforms, such
as Polygon [10] and RSK [11].
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taxonomy of smart contract threat mitigation based on five dimensions: defense modality, core
method, targeted contracts, data mapping, and threat model.
Step II: Design Workflows. In addition to learning what the smart contract threat mitigation
solutions do, we also explore how they achieve their aimed goals — which is challenging due to
a wide variety of innovations and novel techniques employed by the existing solutions. In this
work, we study the design workflows of all the 133 smart contract threat mitigation solutions
under our investigation, and we subdivide them into eight core methods: static analysis, symbolic
execution, fuzzing, formal analysis,machine learning, execution tracing, code synthesis, and transaction
interception. Then, we synthesize the actual designs of the threat mitigation solutions corresponding
to each of the eight core methods and build eight uniform workflows that summarize the whole
variety of threat mitigation solutions for smart contracts.
Step III: Vulnerability Coverage. Next, we raise another important question: which known vul-
nerabilities are covered (i.e., prevented, detected, or unmasked) by the existing smart contract threat
mitigation solutions? Answering this question requires overcoming two significant challenges: i)
the lack of explicit and implicit declaration of addressed vulnerabilities by many threat mitigation
solutions, and ii) the lack of uniform definitions of smart contract vulnerabilities. To overcome
these challenges, we meticulously translate, group, or un-group the vulnerabilities referred to by
the authors of the threat mitigation solutions to match the vulnerability classification proposed
by the popular SWC Registry. Thus, we develop a unified vulnerability coverage map for these
solutions based on the SWC registry.
Step IV: Evolutionary Analysis.We perform an evidence-based evolutionary analysis of existing
smart contract threat mitigation solutions to identify trends and potential future research directions.
Specifically, we identify the three most promising vectors of development of smart contract threat
mitigation solutions: dynamic transaction interception, AI-driven security, and study of human-
machine interaction in smart contracts. In addition, we identify two major deficiencies of the
existing body of threat mitigation solutions: the under-representation of non-Ethereum smart
contracts as targets and the lack of security-related large-scale measurements, especially related to
off-chain data.

In summary, in this work, we make the following contributions:
• We develop a five-dimensional threat mitigation taxonomy tailored for smart contracts, and
we use this taxonomy to classify 133 existing smart contract threat mitigation solutions.

• We pinpoint eight core methods adopted by the existing smart contract threat mitigation
solutions, and we develop synthesized workflows of these methods to demonstrate the
internal workings of smart contract threat mitigation.

• We identify the threat mitigation solutions that explicitly declare protection against specific
vulnerabilities, and we create a smart contract vulnerability coverage map for these solutions.

• We identify trends and deficiencies of the existing smart contract mitigation solutions based
on the findings of this survey and other solid evidence.

• Finally, in the spirit of open research, we develop and publish a constantly updated online
registry of threat mitigation solutions, called the STM Registry2.

Organization. The rest of this work is organized as follows. First, we compare our work with
previous surveys related to smart contract security (§2). Then, we describe the methodology
employed in this survey (§3). After that, we classify 133 threat mitigation solutions based on
the developed five-dimensional taxonomy (§4), followed by a detailed comparative description of
designs of the eight core methods of threat mitigation (§5). Next, we compare the threat mitigation
methods by their ability to address specific known smart contract vulnerabilities (§6). Then, we
2https://stmregistry.io/
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discuss trends and future perspectives of threat mitigation in smart contracts (§7), and finally, we
conclude our work (§8).

2 PRIOR SURVEYS
A number of previous surveys aimed at smart contract security have been published, which,
however, have different perspectives than this survey. Atzei et al. [30] propose the first systematic
exposition of the Ethereum security vulnerabilities by organizing the vulnerabilities in three levels:
Solidity3, EVM4 bytecode, and blockchain. They also illustrate six influential attacks in different
application scenarios. In contrast, we primarily target vulnerability mitigation methods rather
than the classification of programming pitfalls. Jiachi et al. [51] propose an empirical survey that
provides a systematic study of smart contract defects on the Ethereum platform from five aspects:
security, availability, performance, maintainability, and re-usability. They collect and analyze smart
contract-related posts on Ethereum.StackExchange5 as well as real-world smart contracts to define
20 kinds of contract flaws and 5 relevant impacts. Zou et al. [176] perform an exploratory research
to illustrate the current state and potential challenges in smart contract development. Specifically,
they conduct semi-structured interviews with 20 developers and professionals, followed by a survey
of 232 practitioners to confirm the 5 conclusions from the interviews that focus primarily on
smart contract development. In addition, Zhang et al. [169] present a new classification framework
for smart contract bugs and construct a dataset of 176 buggy smart contracts. Wang et al. [159]
conduct an analysis of the security of Ethereum smart contracts and categorize these security
challenges into abnormal contracts, program vulnerabilities, and unsafe external data. Vacca
et al. [150] provide a systematic review of techniques and tools used to address the software
engineering-specific challenges of blockchain-based applications by analyzing 96 papers. The above
surveys summarize smart contract security and development issues, while we focus on vulnerability
mitigation solutions.

There are also a number of surveys that take the vulnerability mitigation solutions into consider-
ation. Huashan et al. [50] present a comprehensive and systematic survey on Ethereum systems
security which includes vulnerabilities, attacks, and defenses. The authors discuss 44 kinds of
vulnerabilities based on the layers of the Ethereum architecture and describe the history, cause,
tactic, and direct impact of 26 attacks. As for defenses, the authors enumerate 47 defense mech-
anisms and provide the best practices to guide contract development. Although they divide the
defenses into proactive and reactive, they are lacking an explanation of how the different tools are
designed. Another survey by Wang and He et al. [157] reviews 6 kinds of vulnerability detection
methods and privacy protection techniques in 3 platforms (i.e., Ethereum, Hyperledger fabric
and Corda), and summarizes several commonly used tools for each method. Di Angelo et al. [58]
investigate 27 analysis tools of Ethereum smart contracts regarding availability, maturity level,
methods employed, and detection of security issues. They examine the availability and functionality
of the tools and compare their characteristics in a structured manner. In comparison, we carry
out a multi-dimensional classification of 133 solutions and take into account different aspects of
threat mitigation. Besides, we also analyze different defense mechanisms through their architecture.
Furthermore, Samreen et al. [135] review some detection tools and discuss eight vulnerabilities by
analyzing past exploitation cases. Ni et al. [124] propose a three-layered threat model for smart
contract security and introduce 15 major vulnerabilities of Ethereum at three levels: programming
language, virtual machine, and blockchain. They also summarize and compare the three most
3Solidity is an object-oriented programming language used mostly for writing Ethereum smart contracts.
4The Ethereum Virtual Machine (EVM) is a software platform for executing Ethereum smart contracts. All smart contracts
are compiled into bytecode and run on the EVM of all Ethereum nodes.
5https://ethereum.stackexchange.com/
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commonly used vulnerability mitigation techniques, viz., fuzzing, symbolic execution, and formal
verification. Li et al. [99] survey the security threats of blockchain and enumerate 6 real attack cases.
They also review the security enhancement solutions for blockchain by introducing 5 commonly
used defense tools. In contrast, we categorize defenses in 5 orthogonal dimensions and compare
133 commonly used solutions. Praitheeshan et al. [130] review the security of Ethereum smart
contracts through 16 types of security vulnerabilities, 19 software security issues, and 3 defense
methods. For each defense method, they list several common tools but do not compare the different
methods and tools. In contrast, we summarize 5 more vulnerability core methods and compare
them through 5 dimensions. Moreover, we also construct a compact vulnerability map that contains
37 known vulnerabilities to summarize the vulnerability-addressing ability of 38 classes of threat
mitigation solutions.
There are several studies that delve into a specific defense method (e.g., formal verification).

Tolmach et al. [146] scrutinize formal models and specifications of smart contracts. They categorize
the specifications of smart contracts in various application domains and propose a four-layered
framework to classify smart contract analysis methods. After that, they summarize the tools for
formal verification and group them based on the utilized techniques. In addition, the authors also
discuss the difficulties in smart contract verification and development. Similarly, Singh et al. [139]
conduct a systematic survey about current formalization research on all smart contract-enabled
blockchain platforms by summarizing 35 studies between 2015 and 2019. However, these studies
focus purely on formal verification without examining other types of threat mitigation. On the
contrary, we provide eight commonly used vulnerability mitigation core methods and identify
future research trends and directions in smart contract threat mitigation.
Unlike the above surveys, which have insufficient technical depth or only focus on a specific

method, our survey comprehensively reviews the topic of eight commonly used core methods.
Overall, we undertake four major steps to shed light on the ever-evolving threat mitigation
landscape of smart contracts: 1) comprehensive 5-dimensional classification taxonomy; 2) synthesis
of design workflows corresponding to the eight core methods; 3) vulnerability coverage map; and
4) evolutionary analysis with trends and perspectives. The combination of these four steps applied
to 133 solutions makes our work the most comprehensive systematization of smart contract threat
mitigation to date.

3 METHODOLOGY
In this section, we describe the details of the 4-step methodology that we use in this survey. Fig. 1
depicts these steps, which include: Step I: developing the classification taxonomy of smart contract
threat mitigation solutions (§3.1); Step II: synthesizing the workflows of the core methods of
threat mitigation solutions (§3.2); Step III: developing the vulnerability coverage map by threat
mitigation solutions (§3.3); and Step IV: investigating the evolutionary trends and deficiencies of
threat mitigation in smart contracts (§3.4). Next, we describe the approaches employed by these
four steps in detail.

3.1 Classification Taxonomy
To classify the smart contract threat mitigation solutions, we build a comprehensive taxonomy
of threat mitigation, which includes the following five orthogonal dimensions (see Table 1): 1)
defense modality, 2) core method, 3) targeted contracts, 4) data mapping, and 5) threat model.
We empirically verify that our taxonomy is not only concise but also allows to describe a threat
mitigation solution with high accuracy. For example, using our taxonomy, the popular threat
mitigation tool Oyente [111] can be accurately described via the following single sentence:
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Fig. 1. Four-step methodology of this survey.

Table 1. Smart contract threat mitigation taxonomy

Classification Dimension Possible Values Short Notation

Defense Modality
prevention PR
detection DET
exploration EXP

Core Method

static analysis SA
symbolic execution SE

fuzzing F
formal analysis FA
machine learning ML
execution tracing ET
code synthesis CS

transaction interception TI

Targeted Contracts

Ethereum ETH
EVM-compatible EVMc
any contract aC
non-Ethereum nETH

Data Mapping

Input Output
source code report
bytecode source code

ABI bytecode
specifications action
chain data exploits

assembly code metadata

Input Output
S R
B S
A B
Sp Ac
C E
As M

Threat Model
vulnerable contract only VC
malicious contract only MC

malicious or vulnerable contract MVC
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“Oyente is a security tool based on symbolic execution that detects and reports vulnerabil-
ities in the bytecode of malicious or buggy Ethereum smart contracts."

Moreover, our taxonomy is cross-platform and general enough to be applied to the future
developments of threat mitigation for smart contracts, even when new methods or platforms
emerge. Next, we describe all these five dimensions of the threat mitigation taxonomy in detail
(§3.1.1–§3.1.5).

3.1.1 DefenseModality. The defense modality is the essential philosophy used by a threat mitigation
solution to achieve its goals, which is either prevention, detection, or exploration. The prevention
methods aim at verifying or enforcing certain security properties of a smart contract. For example,
the requirement that if a smart contract accepts cryptocurrency deposits, it must also provide the
functionality for cryptocurrency withdrawal, can be used by a solution with the prevention modality
as a property to enforce or verify security. The detection methods look for known vulnerabilities
in smart contracts. For instance, defense tools that search for reentrancy vulnerabilities in smart
contracts pertain to the detection defense modality. The exploration approaches enhance the
transparency of a smart contract or associated transactions in order to facilitate security audits. For
example, an auditing tool that allows demystifying the call stack of a complicated smart contract,
thereby exposing the potential security problems, would belong to the exploration defense modality.

3.1.2 Core Method. The core method is the technical approach describing the implementation
principles of a given threat mitigation solution. Unlike defense modality, which describes the general
philosophy of a solution, the core method describes the implementation methodology utilized by the
solution; in other words, the same defense philosophy can be implemented in a number of different
core methods. Threat mitigation solutions belonging to the same core method, despite the diversity
of implementations, share the same major workflow with possible minor additions. For example, all
symbolic execution methods take a smart contract and a set of specifications as an input, utilize an
SMT solver, and produce a human-readable report as an output; however, many symbolic execution
solutions, in addition to the standard workflow items, add some additional modules and data units.
In this work, we build workflows that demonstrate which items are essential and which of them
provide an incremental augmentation.

3.1.3 Targeted Contracts. The dimension of targeted contracts describes the class of smart contracts
that a threat mitigation solution applies to. This dimension is largely shaped by the practical
circumstance, in which the vast majority of smart contract threat mitigation solutions target the
popular Ethereum platform. Moreover, we notice that within the Ethereum platform, there is very
little variety in terms of what kind of Ethereum smart contracts the threat mitigation solutions
target. In other words, most solutions target Ethereum, and these Ethereum-based solutions are
suitable for any Ethereum contract. Thus, to accurately represent the practical reality of the
distribution of smart contract threat mitigation solutions in the dimension of targeted contract,
we subdivide this dimension into four classes: Ethereum smart contracts, EVM-compatible smart
contracts, non-Ethereum smart contracts, and any smart contract (i.e., platform-agnostic). Fig. 2
shows the Venn diagram of the relationships between these classes. Specifically, all Ethereum
contracts are EVM-compatible, but there are non-Ethereum platforms that may or may not be
EVM-compatible. At the same time, the “any contract” scope would embrace all the types of smart
contracts mentioned above, without prioritizing any of them.

3.1.4 Data Mapping. The data mapping dimension describes what the input and output of a given
threat mitigation solution are. As shown in Table 1, the input of a threat mitigation solution may
be a combination of 1) source code; 2) bytecode; 3) application binary interface (ABI); 4) security

J. ACM, Vol. 37, No. 4, Article 0. Publication date: November 2022.
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Fig. 2. Venn diagram of relationships between different scopes of smart contracts.

specifications; 5) chain data; or 6) assembly code. The output can be represented by any combination
of the following six entities: 1) security report; 2) source code; 3) bytecode; 4) defense action; 5) set
of exploits; or 6) metadata. In this work, we use the symbol ↦→ as a convention for data mapping. For
example, if the input of a threat mitigation solution is a set of specifications with the source code
of the smart contract, and the output is a human-readable report, then we denote such a mapping
as Sp,S↦→R. As we can see, the data mapping dimension allows to concisely and informatively
describe the requirements for the input and expectations for the output for a smart contract threat
mitigation solution.

3.1.5 Threat Model. The dimension of threat model describes the vector(s) of potential attacks
that the threat mitigation solution aims to prevent, detect, or explore. We empirically observe
that all the smart contract threat mitigation solutions belong to either of the three general threat
models: 1) the one with the malicious smart contract; 2) the one in which the smart contract is
the victim; and 3) the agnostic model, in which the contract may be either malicious or a victim.
For example, the threat mitigation solutions capable of preventing exploitations of the reentrancy
vulnerability, responsible for the infamous DAO hack [69], belong to the VC (victim contract) model.
Conversely, a tool defending against honeypot smart contracts, which set unexpected traps for
hackers attempting to exploit known smart contract vulnerabilities, is a typical example of a threat
mitigation tool assuming the malicious contract (MC) threat model. However, some solutions defend
against vulnerabilities that can be used both in a malicious or a victim smart contract; in this
case, we assign to this solution the malicious-or-vulnerable contract (MVC) model. For example, the
SWC-123 vulnerability [16], called Requirement Violation, can be both a bug in a vulnerable smart
contract or an intentional malicious action of the smart contract developer.

3.2 Workflows of Core Methods
In this survey, not only do we explore what the smart contract threat mitigation solutions do,
but we also explore, for the first time, how these solutions accomplish their goals. In order to do
that, we adopt the following approach: for each of the eight core methods introduced in §3.1.2, we
synthesize the workflows of all the existing solutions implementing these methods to showcase
the mandatory (common for all solutions) and augmented (observed in some solutions) elements.
Sections 5.1—5.8 describe the synthesized workflows of all the eight core methods of smart contract
threat mitigation. In order to embrace the diverse variety of implementations, we use a uniform set
of conventions in the eight workflows. Specifically, we use three types of elements connected with
flows (arrows): modules (data processors), data entities, and environments (groups).

3.3 Vulnerability Coverage
The third step of our survey is scrutinizing the vulnerability coverage, i.e., to determine which
known vulnerabilities are detectable and/or preventable by the existing threat mitigation solutions. To
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accomplish that, we create a uniform vulnerability coverage map using the popular SWC Registry.
This task poses two major challenges: i) many threat mitigation solutions do not explicitly or
even implicitly declare the set of addressed vulnerabilities; ii) the majority of threat mitigation
solutions refer to the existing vulnerabilities using custom names and/or groupings, which often
do not correspond to the SWC taxonomy. Here, we select the 38 threat mitigation solutions that
explicitly specify the list of targeted vulnerabilities, and then we meticulously translate the declared
vulnerability coverage provided by the selected 38 solutions into the SWC conventions.

3.4 Threat Mitigation Evolution
Our final step explores the evolution of the smart contract threat mitigation solutions, as well as the
trends and obstacles observed in this area of computer security. Specifically, we explore the adoption
and augmentation of new core methods over time. For each threat mitigation solution, we keep
track of the publication date as well as the initial release or announcement date, whenever available.
Additionally, we analyze the “blind spots” of the existing body of smart contract mitigation solutions
— the potentially feasible yet unexplored combinations of approaches that can bring more benefits,
especially if a similar combination of approaches has been successful in other more mature areas
of computer security. As a result, we make five observations supported by data and evidence. First,
we identify that dynamic transaction interception methods of smart contract threat mitigation are
gaining momentum in the research community. Second, we show that the smart contract threat
mitigation solutions utilizing AI and machine learning have started playing an important role
in smart contract defense. Third, we identified the emerging trend for studying human-machine
interaction in the domain of smart contracts. Fourth, we confirm that Ethereum smart contracts
are over-represented by the threat mitigation solutions, and we discuss likely reasons explaining
this phenomenon. Finally, we discuss the necessity for more exploration tools and large-scale
measurements for gathering important data about smart contract security, such as the real market
value of smart contracts and the traces of choices made by miners and crypto exchanges.

4 THREAT MITIGATION CLASSIFICATION
In this section, we apply the taxonomy developed earlier (§3.1) to describe each of the threat
mitigation solutions via the five orthogonal dimensions: threat mitigation modality (§4.1), core
method (§4.2), the scope of targeted contracts (§4.3), the input-output data mapping of the solution
(§4.4), and the assumed threat model (§4.5). The results of our classification are given in Table 2.
Furthermore, we perform a frequency analysis of the results along the five dimensions, and create
a visual representation of the distributions of defense modalities, core methods, targeted contracts,
and threat models in Fig. 3. In the first column of the table, we assign to each of the threat mitigation
solutions a permanent Security Threat Mitigation (STM) registry identifier in the STM-XXX format.
The second column provides the name of the tool implementing the solution along with its reference;
if a solution does not have a common name, we refer to the solution by its authors (e.g., Ivanov et
al.). In columns 3–7, we provide the values along the five classification dimensions for each of the
133 threat mitigation solutions. Furthermore, to keep the data in this table up to date and handy,
we deploy the Smart Contract Threat Mitigation Registry (STM Registry) at https://stmregistry.io/.
Selection Method of the Threat Mitigation Solutions. For this survey, we select 133 threat mit-
igation solutions, encompassing both academic research projects (e.g., Securify [149], Oyente [111]
and commercial non-academic efforts (e.g., OpenZeppelin Contracts [9], MythX [7]). To assure the
quality of our study, we use the following four criteria for selecting threat mitigation solutions:
(1) Implementation. We select only solutions that are implemented and evaluated, either as a

proof-of-concept (PoC) prototype or in the form of a final product.
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Table 2. Classification of threat mitigation solutions based on the proposed taxonomy.

STM Threat Classification Criteria (Dimensions)†

registry mitigation Defense Core Targeted Data Threat
code solution Modality Method Contracts Mapping Model

STM-001 Oyente [111] DET SE ETH B ↦→ R MVC
STM-002 Mythril [120] DET SE ETH B ↦→ R MVC
STM-003 Securify [149] DET+PR SA ETH B,S ↦→ R,M MVC
STM-004 Maian [125] DET SE ETH B ↦→ R MVC
STM-005 Manticore [119] DET SE ETH B ↦→ R MVC
STM-006 KEVM [83] EXP FA ETH B ↦→ R MVC
STM-007 ZEUS [92] PR SE ETH B ↦→ R MVC
STM-008 Sereum [132] DET ET,TI ETH C ↦→ R VC
STM-009 ECFChecker [78] PR ET,TI ETH C ↦→ R VC
STM-010 teEther [96] DET SE ETH B ↦→ E VC
STM-011 Hydra [42] PR CS ETH S ↦→ B VC
STM-012 Erays [175] EXP SA ETH B ↦→ M MVC
STM-013 TokenScope [55] DET ET ETH C ↦→ R MVC
STM-014 Osiris [147] DET SE ETH B ↦→ R VC
STM-015 Vandal [44] DET SA ETH B ↦→ R MVC
STM-016 FSolidM [115] PR CS ETH S,Sp ↦→ S VC
STM-017 ContractFuzzer [89] DET F ETH A,B ↦→ R VC
STM-018 S-GRAM/Ether* [106] DET SA ETH S ↦→ R MVC
STM-019 MadMax [74] DET SA ETH B ↦→ R MVC
STM-020 SmartCheck [145] DET SA ETH S ↦→ R MVC
STM-021 ReGuard [105] DET F ETH S ↦→ R,E VC
STM-022 GASPER [54] DET SA ETH B ↦→ R MC
STM-023 Grishchenko et al. [77] EXP FA ETH B ↦→ M MVC
STM-024 Lolisa [164] PR FA ETH S ↦→ R MVC
STM-025 SASC [173] EXP SA ETH S ↦→ R MVC
STM-026 Chen et al. [56] DET ET,SA ETH C,S ↦→ R MC
STM-027 Solidity*/EVM* [36] PR SA,FA ETH S ↦→ R MVC
STM-028 Amani et al. [26] PR SA,FA ETH B,Sp ↦→ R MVC
STM-029 Model-Checking [121] PR FA ETH Sp,S ↦→ R MVC
STM-030 EtherTrust [76] DET SA ETH B ↦→ R MVC
STM-031 Flint [137] PR CS ETH Sp ↦→ S VC
STM-032 HoneyBadger [148] DET SA,SE ETH B ↦→ R MC
STM-033 ILF [81] DET F,ML ETH B,S ↦→ R MVC
STM-034 VeriSolid [116] PR FA,CS ETH S,Sp ↦→ S VC
STM-035 solc-verify [79] PR SA ETH S,Sp ↦→ R MVC
STM-036 Slither [62] DET SA ETH S ↦→ R MVC
STM-037 sCompile [49] DET SE ETH B ↦→ R MVC
STM-038 NPChecker [155] DET SA ETH B ↦→ R MVC
STM-039 BitML [31] PR SA nETH C,Sp ↦→ R,E VC
STM-040 CESC [101] DET SA ETH B ↦→ R VC
† DET— detection; PR — prevention; EXP — exploration; SA — static analysis; SE — symbolic execution; F — fuzzing; FA — formal analysis;
ML — machine learning; ET — execution tracing; CS — code synthesis; TI — transaction interception; S — source code; B — bytecode;

A — ABI; Sp — specifications; C — chain data; As — assemb. code; R — report; Ac — action; E — exploits; M — metadata; ETH — Ethereum;
nETH — non-Ethereum; EVMc — EVM-comp.; aC — any contract; VC — vuln. contract; MC — mal. contract; MVC — mal. or vuln. contract.
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STM Threat Classification criteria

registry mitigation Defense Core Targeted Data Threat
code solution Modality Method Contracts Mapping Model

STM-041 EasyFlow [72] DET SA ETH C ↦→ R VC
STM-042 Vultron [154] DET CS ETH S ↦→ R VC
STM-043 SAFEVM [23] PR SA ETH S,B ↦→ R MVC
STM-044 EthRacer [94] DET F ETH B,C ↦→ R MVC
STM-045 SolidityCheck [168] DET SA ETH S ↦→ R MVC
STM-046 EVMFuzz [70] DET F ETH S ↦→ R MVC
STM-047 EVulHunter [131] DET SA ETH As ↦→ R VC
STM-048 GasFuzz [112] DET F ETH B ↦→ R MVC
STM-049 NeuCheck [109] DET SA ETH S ↦→ R MVC
STM-050 SolAnalyser [22] DET SA ETH S ↦→ R MVC
STM-051 SoliAudit [103] DET F ETH S ↦→ R MVC
STM-052 MPro [171] DET SA,SE ETH S ↦→ R MVC
STM-053 Li et al. [100] PR FA ETH S ↦→ R VC
STM-054 Gastap [24] PR SA ETH S,B,As ↦→ R MVC
STM-055 Momeni et al. [118] DET ML ETH S ↦→ M MVC
STM-056 KSolidity [90] EXP FA ETH S ↦→ M MVC
STM-057 VerX [129] PR SE,CS ETH S ↦→ R MVC
STM-058 VeriSmart [141] DET SA ETH S ↦→ R MVC
STM-059 TxSpector [167] EXP SA,ET ETH C ↦→ R MVC
STM-060 Zhou et al. [174] EXP SA ETH C ↦→ R MVC
STM-061 ETHBMC [68] DET SE ETH B ↦→ R MVC
STM-062 SODA [53] DET TI EVMc C ↦→ R,Ac VC
STM-063 Ethor [136] PR SA,FA ETH B ↦→ R MVC
STM-064 ÆGIS [65] DET TI ETH C ↦→ R,Ac VC
STM-065 SafePay [102] DET SE ETH S,B ↦→ R VC
STM-066 Solar [64] DET CS,SE ETH Sp ↦→ R VC
STM-067 EVMFuzzer [71] DET F EVMc Sp ↦→ R MVC
STM-068 ModCon [107] DET+PR F aC S ↦→ R MVC
STM-069 Harvey [162] DET F ETH S ↦→ R MVC
STM-070 Solythesis [98] PR CS ETH S ↦→ S VC
STM-071 Ethainter [43] DET SA ETH S ↦→ R MVC
STM-072 sFuzz [123] DET F ETH B,A ↦→ R MVC
STM-073 Seraph [165] DET SE aC S ↦→ R MVC
STM-074 Clairvoyance [166] DET SA ETH S ↦→ R VC
STM-075 Artemis [151] DET SE ETH B ↦→ R MVC
STM-076 Echidna [75] DET F ETH B,Sc ↦→ R,M MVC
STM-077 EShield [163] PR CS ETH B ↦→ B VC
STM-078 SMARTSHIELD [172] DET CS ETH B ↦→ B,R VC
STM-079 ETHPLOIT [170] DET F ETH S ↦→ E MVC
STM-080 Cecchetti et al. [48] PR CS aC S ↦→ R VC
STM-081 EthScope [160] DET ET ETH C ↦→ R MC
STM-082 ContractWard [156] DET ML ETH S ↦→ R,M MVC
STM-083 RA [57] DET SA,SE ETH B ↦→ R VC
STM-084 Camino et al. [46] DET SA ETH B ↦→ R MC
STM-085 OpenBalthazar [29] DET SA ETH S ↦→ R MVC
STM-086 sGUARD [122] PR SA,FA ETH B ↦→ R VC
STM-087 SmartPulse [142] PR SA ETH S,Sp ↦→ R MVC
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STM Threat Classification criteria

registry mitigation Defense Core Targeted Data Threat
code solution Modality Method Contracts Mapping Model

STM-088 SeRIF [47] DET FA aC S ↦→ R VC
STM-089 EVMPatch [133] DET CS ETH B,C ↦→ B VC
STM-090 Perez et al. [128] EXP ET ETH C ↦→ R VC
STM-091 DEFIER [143] DET ET ETH C ↦→ R MVC
STM-092 SmarTest [140] DET SE,SA ETH B ↦→ R,E MVC
STM-093 EOSAFE [82] DET SA nETH B ↦→ R MVC
STM-094 Ivanov et al. [88] PR+DET SA ETH S ↦→ R MC
STM-095 ConFuzzius [66] DET F ETH B,A ↦→ R MVC
STM-096 Huang et al. [86] DET SA ETH B ↦→ R VC
STM-097 STC/STV [85] PR SA ETH S ↦→ R VC
STM-098 Horus [67] DET ET ETH C ↦→ R MVC
STM-099 BlockEye [152] DET ET,TI ETH C ↦→ R MVC
STM-100 Sailfish [39] DET SE,SA ETH B ↦→ R MVC
STM-101 DeFiRanger [161] DET SA ETH C ↦→ R VC
STM-102 ESCORT [110] DET ML ETH B,Sp ↦→ R MVC
STM-103 DefectChecker [52] DET SE ETH B ↦→ R MVC
STM-104 Hu et al. [84] DET SA,ML ETH B ↦→ R MVC
STM-105 HFContractFuzzer [59] DET F nETH S ↦→ R VC
STM-106 Solidifier [28] PR FA ETH S ↦→ R VC
STM-107 SafelyAdministrated [87] PR CS,ML ETH S ↦→ S MC
STM-108 EXGEN [91] DET SE aC S ↦→ R VC
STM-109 EtherProv [104] DET SA ETH S ↦→ B,M MVC
STM-110 Abdellatif et al. [20] PR FA aC C ↦→ R MVC
STM-111 Bai et al. [32] PR FA aC Sp ↦→ R MVC
STM-112 Bigi et al. [37] PR FA aC Sp ↦→ R MVC
STM-113 Findel [38] PR CS aC Sp ↦→ S VC
STM-114 ContractLarva [61] PR CS ETH S,Sp ↦→ S MVC
STM-115 Le et al. [97] PR FA aC S ↦→ R MVC
STM-116 Solicitous [114] PR SA ETH S ↦→ B MVC
STM-117 VeriSol [158] PR FA EVMc S ↦→ R VC
STM-118 SmartCopy [63] DET F ETH B,A ↦→ R VC
STM-119 WANA [153] DET SE aC B ↦→ R MVC
STM-120 E-EVM [126] EXP ET ETH C ↦→ R MVC
STM-121 AMEVulDetector [108] DET ML aC S ↦→ R MVC
STM-122 Javadity [21] PR CS EVMc S ↦→ S MVC
STM-123 Alqahtani et al. [25] PR SA aC S ↦→ B MVC
STM-124 Bartoletti et al. [33] PR FA nETH S ↦→ R MVC
STM-125 Beckert et al. [34] PR FA nETH S ↦→ R VC
STM-126 SmartInspect [40] EXP SA ETH S,C ↦→ R MVC
STM-127 CPN [60] EXP SA ETH S,B ↦→ R MVC
STM-128 Hajdu et al. [80] PR FA,SA ETH S ↦→ R MVC
STM-129 Kongmanee et al. [95] PR FA ETH Sp ↦→ M MVC
STM-130 EVM* [113] PR TI ETH B,C ↦→ R,Ac MVC
STM-131 OpenZeppelin Contracts [9] PR CS ETH S ↦→ S VC
STM-132 MythX [7] DET many ETH B ↦→ R MVC
STM-133 Contract Library [2] DET+PR CS ETH B ↦→ R MVC
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(a) Defense modality (b) Core method

(c) Targeted contracts (d) Threat model

Fig. 3. Distribution of threat mitigation methods by four criteria: defense modality, core method, targeted
contracts, and threat model.

(2) Publication. For academic research projects, we search for the papers published or accepted
at a reputable peer-reviewed venue.

(3) Impact. We select solutions that deliver specific improvements or other unique qualities
compared to the state-of-the-art solutions.

(4) Novelty. Not only do we consider the fact of improvement or impact, but we also consider
the presence of technical novelty, i.e., a specific innovation that leads to the improvement.

In some cases, we include threat mitigation solutions that do not meet all the four above criteria,
such as the academic project Vandal [44], which has never been published at a peer-reviewed venue.
However, we include this work in our survey because it is widely adopted and cited.

Lessons learned: There are more than 200 claims of smart contract threat mitigation
solutions. Yet, our thorough manual examination reveals various problems associated with
some of them. For example, we observed that sometimes two research papers refer to the
same implementation (e.g., poster or journal extension articles). In the end, 133 instances
have been selected to represent the body of smart contract threat mitigation solutions.
Therefore, manual scrutiny of each work is required.
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4.1 Threat Mitigation Modalities
A threat mitigation modality is a philosophy that a smart contract threat mitigation method employs
to address security issues of a smart contract. The threat mitigation solutions that employ the
detection modality are designed to identify vulnerabilities in smart contracts. Some of them (e.g.,
Oyente [111], Securify [149], Vandal [44], and Mythril [120]) target several groups of vulnerabilities.
Other detection-based threat mitigation solutions focus on specific classes of vulnerabilities, such
as Sereum [132], which detects only reentrancy vulnerabilities (SWC-107 [13]). Another narrow-
focused detection tool is VeriSmart [141], which detects arithmetic bugs only. Overall, we note that
the detection solutions that focus on specific vulnerabilities tend to deliver improved detection
rates compared to the solutions targeting multiple vulnerabilities.
The solutions belonging to the prevention modality validate some safety properties or rules.

ZEUS [92] provides eight semantic rules that are used as part of an abstract assertion language for
specifying safety properties for ensuring that a smart contract is free of certain vulnerabilities (e.g.,
reentrancy, unchecked send, integer overflow, etc.). Another salient representation of a prevention
solution is SmartPulse [142], which creates a linear temporal logic (LTL) language, called SmartLTL,
for expressing temporal safety properties in smart contracts and enforcing themwith the SmartPulse
verifier.

The exploration modality solutions do not detect vulnerabilities or enforce safety properties;
instead, they reveal previously concealed data that facilitates human-based or automated auditing
of a smart contract. Erays [175] is a tool for reverse-engineering of smart contracts that converts a
bytecode of a smart contract into pseudocode-like metadata. TxSpector [167] is another exploration
solution, which is a transaction processing framework that identifies the executed attacks in smart
contract execution traces.

Some threat mitigation solutions adhere to a hybrid detection+prevention modality, which means
that they can detect existing vulnerabilities, as well as enforce security properties. Securify [149] not
only checks the compliance with security patterns but also detects violations of patterns associated
with specific vulnerabilities, such as reentrancy and restricted transfer. Another threat mitigation
solution with a hybrid detection+prevention modality is ModCon [107], which is a smart contract
testing tool that generates a list of states and transitions between these states, thereby enabling
further identification of vulnerabilities and confirmation of security properties.
Fig. 3a shows the breakdown of the three defense modalities among the 133 threat mitigation

solutions. As we can see, 81 (59.6%) of all the threat mitigation solutions employ the detection
modality, 44 (32.4%) use the verification modality, and the remaining 11 (8.1%) belong to the
exploration modality. Some threat mitigation solutions exhibit a hybrid modality (e.g., DET+PR
— detection combined with prevention), in which case we identify and assume the predominant
modality for the statistical analysis, or we count both modalities in cases when it is impossible to
detect the predominant one — which explains the 136 total modalities considered, despite the fact
that they correspond to 133 threat mitigation solutions.

4.2 Core Methods
The core method describes how a threat mitigation solution addresses the security issues of a
smart contract. In other words, the core method defines the implementation approach, choice of
algorithms, and internal data processing model of a threat mitigation solution. By scrutinizing all
the 133 smart contract threat mitigation solutions, we identify eight distinct core methods: 1) static
analysis; 2) symbolic execution; 3) fuzzing; 4) formal analysis; 5) machine learning; 6) execution
tracing; 7) code synthesis; and 8) transaction interception.
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Static analysis solutions extract data from smart contracts in order to detect vulnerabilities or
confirm safety properties. Most static analysis solutions adhere to the detection modality (e.g.,
Security [149], S-GRAM [106], MadMax [74], SmartCheck [145]). However, some static analysis
solutions enforce policies instead of detecting vulnerabilities (e.g., solc-verify [79], BitML [31],
GasTap [24], Solicitious [114]). Moreover, we notice that the static analysis core method is often
coupled with some other methods. Solidity* [36], Amani et al. [26], Ethor [136], and sGUARD [122]
use static analysis together with formal analysis. Also, static analysis is often used together with the
symbolic execution core method, as we can see in HoneyBadger [148], MPro [171], SmarTest [140],
and Sailfish [39].

Symbolic execution methods execute a smart contract with symbolic parameters instead of real
ones — in order to make conclusions regarding some security properties of smart contracts (e.g.,
the range of values that make a certain condition true). Oyente [111], Mythril [120], Maian [125],
Manticore [119], ZEUS [92], Osiris [147], teEther [96] are popular solutions employing the symbolic
execution core method. Similar to static analysis, symbolic execution is also often coupled with
other core methods. VerX [129] and Solar [64] use symbolic execution to guide code synthesis. The
solution by Hu et al. [84] takes advantage of both symbolic execution and machine learning for
detecting smart contract vulnerabilities.
Fuzzing methods perform smart contract testing by iteratively generating test cases that are

likely to reveal vulnerabilities. ContractFuzzer [89] uses the abstract binary interface (ABI) of
the smart contract to facilitate the generation of fuzzing inputs. Harvey [162] is a smart contract
tester based on greybox fuzzing, which is a middle-ground solution between the absence of code
analysis (blackbox fuzzing) and full code execution (whitebox fuzzing); specifically, greybox fuzzing
assumes a lightweight (compared to symbolic execution) analysis of the code execution paths.
Confuzzius [66] is a smart contract fuzzer that uses a combination of genetic algorithms and
constraint solving. Overall, fuzzing threat mitigation solutions utilize a diverse variety of predictive
methods for balancing accuracy and performance.

Formal analysis methods convert a smart contract into a formal representation and run a solver
over this representation to prove or disprove some security properties. Most solutions employing
the formal analysis core method belong to either the prevention defense modality (e.g., Lolisa [164],
Model-Checking [121], Li et al. [100], Solidifier [28], VeriSol [158]) or the exploration modality (e.g.,
KEVM [83], Grishchenko et al. [77]). However, SeRIF [47], which primary purpose is defense against
reentrancy, demonstrates that the formal analysis can also be used for targeting vulnerabilities.

Machine learning methods extract features from smart contracts and train models for detecting
vulnerabilities. The smart contract threat mitigation solutions utilizing the machine learning
core method are ContractWard [156], ESCORT [110], AMEVulDetector [108], and the solution by
Momeni et al. [118]. In §7.2, we conduct an in-depth discussion about the evolutionary perspective
of machine learning in smart contract security.
Execution tracing and transaction interception core methods constitute the transaction-based

methods of smart contract threat mitigation. The execution tracing methods examine the runtime
traces of the actual transactions submitted to a smart contract in order to detect vulnerabilities, verify
safety properties, or facilitate manual auditing. TokenScope [55], EthScope [160], DEFIER [143],
Horus [67], BlockEye [152], E-EVM [126] are instances of “pure” execution tracing methods (i.e.,
not combined with other methods).
Code synthesis threat mitigation solutions aim at generating vulnerability-free smart contract

code resistant to attacks. Hydra [42] is a framework that generates bug bounties for smart con-
tracts using the N-of-N version programming (NNVP) principle. FSolidM [115] is a framework for
designing secure smart contracts as finite state machines (FSMs) and converting them into Solidity
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code. Solythesis [98] is a source-to-source Solidity compiler that instruments the input source code
with additional instructions for validation of security-sensitive invariants.

Transaction interception solutions dynamically observe the transaction pool of a blockchain
node in order to prevent the execution of malicious or unsafe transactions. These solutions are
represented by SODA [53], and EVM* [113]. However, we observe that execution tracing is often
combined with other core methods. Sereum [132] and ECFChecker [78] combine execution tracing
with transaction interception, while TxSpector [167] and the Ponzi scheme detection solution by
Chen et al. [56] utilize trace execution combined with static analysis.

Fig. 3b shows the distribution of the eight core methods among the 133 threat mitigation solutions.
Specifically we found 49 (35.3%) static analysis tools, 21 (15.1%) symbolic execution methods, 15
(10.8%) fuzzing tools, 22 (15.8%) formal analysis tools, 5 (3.6%) machine learning solutions, 11 (7.9%)
execution tracing tools, 13 (9.4%) code synthesis tools, and 3 (2.2%) transaction interceptors. Notably,
some threat mitigation solutions employ a combination of the aforementioned core methods; in
this case, we recognize all the methods evolved in Table 2, yet for the purpose of counting and
frequency analysis, we reduce the combination of core methods to the predominant core method,
if there is one. If it is impossible to identify the predominant core method, we count all of them,
which explains that the total count of instances of core methods slightly exceeds the number of the
threat mitigation solutions surveyed in this work.

4.3 Targeted Contracts
Each of the threat mitigation solutions assumes a type of targeted smart contract. Some solutions
target general groups of smart contracts, such as Ethereum or even all possible contracts, while some
other solutions may target a single specific smart contract instance. Oyente [111], Mythril [120],
Securify [149], Sereum [132], Vandal [44], OpenZeppelin Contracts [9], MythX [7], Contract Li-
brary [2], and many other popular threat mitigation solutions are strictly Ethereum-based. Some
solutions are EVM-compatible, which means that they are compatible with but not limited by
the Ethereum smart contracts. SODA [53], VeriSol [158], and Javadity [21] are EVM-compatible
solutions. Some solutions are universal in terms of the scope of targeted contracts; although they
might not support any type of smart contracts (e.g., the ones that are not Turing-complete), they
do not limit their scope to a specific group either. Such solutions are ModCon [107], Seraph [165],
SeRIF [47], EXGEN [91], and the information flow control solution by Cecchetti et al. [48]. Some
threat mitigation solutions target a specific non-Ethereum platform. BitML [31] targets Bitcoin
smart contract overlays, EOSAFE [82] targets the smart contracts on the EOS blockchain [3], and
HFContractFuzzer [59] targets the Hyperledger Fabric platform [27].

To make sense of this diverse spectrum, we group the targeted smart contracts into four types, as
described in § 3.1.3. Fig. 3c shows the distribution of different groups of targeted contracts among
the threat mitigation methods. Specifically, we discover that as many as 111 (83.5%) solutions target
Ethereum contracts, 13 (9.8%) are suitable for any contract (including Ethereum, but not specifying
it), 5 (3.8%) aim for some non-Ethereum contracts (e.g., Hyperledger Fabric), and 4 (3.0%) target
EVM-compatible contracts (e.g., Polygon [10], RSK [11]).

4.4 Data Mapping
Next, we explore the design-specified inputs and outputs of each of the threat mitigation solutions.
Most smart contract threat mitigation solutions assume a smart contract as an input, either as
bytecode, source code, or as part of the chain data. Oyente [111], Mythril [120], Vandal [44],
ZEUS [92], teEther [96], and Osiris [147] are solutions that take bytecode as a smart contract input.
Hydra [42], S-GRAM [106], SmartCheck [145], VerX [129], VeriSmart [141], and SeRIF [47] are
solutions that assume source code as the input. Sereum [132], ECFChecker [78], TokenScope [55],
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EasyFlow [72], TxSpector [167], and EthScope [160] are the threat mitigation solutions that read
smart contract information from the chain data, i.e., stored copy of the blockchain.
Some threat mitigation solutions use a combination of bytecode and source code as an input,

e.g., Securify6 [149], SAFEVM [23], Gastap [24], SafePay [102], and CPN [60]. Other solutions, in
addition to a smart contract, also take a set of manual specifications as an input, as we see it in
FSolidM [115], Model-Checking [121], VeriSolid [116], solc-verify [79], BitML [31], SmartPulse [142],
ESCORT [110], and ContractLarva [61]. Moreover, a smart contract is not always used as an input
of a threat mitigation solution. For instance, Flint [137], Solar [64], EVMFuzzer [71], Findel [38],
and the solution by Kongmanee et al. [95] assume a set of specifications as the only input.

Most threat mitigation solutions produce a human-readable report as an output, e.g., Oyente [111],
Mythril [120], Maian [125], Manticore [119], ZEUS [92], and Sereum [132]. However, some solutions
produce machine-readable metadata (e.g., a formal model) in lieu of a human-readable report, which
can be observed in Erays [175], the solution by Grishchenko et al. [77], the solution by Momeni et
al. [118], KSolidity [90], and the solution by Kongmanee et al. [95].
Table 2 shows that the majority of the threat mitigation solutions (82.7%) produce a human-

readable report as an output, and for 78.19% of the solutions, the security report is the only output.
Notably, only 4 (3.0%) of all the threat mitigation solutions result in an action (e.g., stopping a
malicious transaction), which is indicative of the predominance of the static methodology in the
smart contract defense, which is further discussed in §7.1.
One important property of data mapping is that it often provides fine-tuned information that

cannot be inferred from theworkflow of the corresponding coremethod. For example, the workflows
of smart contract threat mitigation solutions often specify “smart contract” as one of the inputs.
However, a smart contract can have several representations: source code, bytecode, deployed
address, etc. In this work, we extract the specific meaning of the “smart contract” and represent it
accordingly in the data mapping.

4.5 Threat Model
Finally, we describe all the threat mitigation solutions through the general description of their
assumed threat models. In other words, the threat model specifies the source of the threat, identifies
the victim(s), and defines the intent. We generalize all the threat models by subdividing them into
three major groups: victim contract, malicious contract, and hybrid malicious or victim contract.
Sereum [132], teEther [96], Hydra [42], Osiris [147], SODA [53], ÆGIS [65], EVMPatch [133],
SeRIF [47], and OpenZeppelin Contracts [9] are threat mitigation solutions with the vulnerable
contract threat model. Solutions with malicious contract threat models are the Ethereum honeypot
detector HoneyBadger [148], GASPER [54], and the social engineering attack detector by Ivanov
et al. [88]. Most threat mitigation solutions, however, are threat vector agnostic, i.e., they are
capable of defending against malicious smart contracts, as well as protecting vulnerable contracts.
Securify [149], Oyente [111], ZEUS [92], SmartCheck [145], SmartPulse [142], SmarTest [140], and
MythX [7] are solutions with a bidirectional vector (malicious or victim contract) threat model.
Fig. 3d shows the breakdown of different threat models among the threat mitigation methods.

We find that 41 (30.8%) methods assume vulnerable contracts, 7 (5.3%) imply the malicious contract
model, and 85 (63.9%) assume both these vectors. As we can see, the pure malicious smart contract
threat model is underrepresented among the threat mitigation solutions, which suggests that attacks
on smart contracts are generally perceived as more important than the cases of malicious contracts
attacking users. This finding is corroborated by the study by Zhou et al. [174], which confirms
that the popularity of the honeypot vulnerability, associated with the malicious smart contract

6Source code is optional in Securify.
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modality, is fourth after call injection, call-after-destruct, and airdrop-hunting vulnerabilities, which
all assume the victim smart contract threat model.

5 DESIGNWORKFLOWS OF THREAT MITIGATION METHODS
In this section, we scrutinize the designs of the threat mitigation solutions by synthesizing the
uniform workflows for all the eight core methods, i.e., static analysis (§5.1), symbolic execution
(§5.2), fuzzing (§5.3), formal analysis (§5.4), machine learning (§5.5), execution tracing (§5.6), code
synthesis (§5.7), and transaction interception (§5.8). Figs. 4—11 depict the workflows of the eight
core methods. Each of these eight workflows utilizes a set of uniform elements: modules, data
entities, flows (arrows), and environments. This set of elements allows us to concisely summarize
and demystify the wide variety of implementations of smart contract threat mitigation solutions
using the aforementioned set of uniform conventions.
The modules (green rectangles) represent items that do something, i.e., algorithms, data filters,

etc. Modules can be mandatory, i.e., pertaining to any solution with the given core method (solid
borders) or optional/augmenting, i.e., implemented by some solutions employing the given core
method (dashed borders). The data entities (blue rectangles) represent pieces of data or abstract
data structures. The flows, depicted as arrows, show data or execution transitions. Environments
(red rectangles) allow grouping of certain elements into single logical modules.

Lessons learned: By manually examining the workflows of all the 133 threat mitigation
solutions, we learned that every component exhibits a certain degree of generalization.
For example, an element called “smart contract” is a more general form of what could
also be denoted as “source code” or “bytecode”. Thus, one of the challenges we face when
synthesizing the workflows is to equate the generalizations of similar workflow elements.

5.1 Static Analysis Workflow
The static analysis methods apply automated data filtering and syntax analysis techniques to the
input. Static analysis methods detect vulnerabilities by extracting information (facts) from the
source code or bytecode of a smart contract. Fig. 4 shows the general workflow of static analysis
methods.
The static analysis methods take bytecode (e.g., Erays [175], Vandal [44], MadMax [74]) or

source code (e.g., S-GRAM [106], SmartCheck [145], Slither [62]) of a smart contract as an input,
while some solutions also analyze previously executed transactions gathered from the chain data
(e.g., EasyFlow [72], Zhou et al. [174]). A large part of the static analysis process is devoted to
constructing a model in the form of one or a set of abstract data structures (ADS) that constitute a
suitable (and efficient) input for the static analyzer. Control flow graph (CFG) is a popular type
of such an ADS, which is utilized by Securify [149], Erays [175], and Vandal [44], to name a few.
The built model, data (in the form of some intermediate representation, e.g., a graph), and a set of
pre-defined or user-specified specifications are then directed to the static analyzer, which produces
a human-readable security assessment report.

5.2 Symbolic Execution Workflow
Symbolic execution methods [93] simulate the execution of a smart contract in a way that the
actual inputs are replaced with special traceable symbolic parameters. Fig. 5 depicts the general
workflow of symbolic execution methodology. These methods use smart contract bytecode and a set
of specifications as an input. In some cases, the specifications are part of the tool (e.g., Oyente [111],
Mythril [120], teEther [96], Osiris [147]), in other cases, the specifications are expected to be
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Fig. 4. Workflow of the static analysis core method.

provided by the user (e.g., Maian [125]). Symbolic execution methods execute smart contracts with
traceable (symbolic) parameters in lieu of actual inputs, which allows to prove or disprove some
presumptions about smart contracts. Specifically, symbolic execution can answer questions about
the possibility of execution of a certain block of code (reachability), the ability to invoke a certain
execution path, or the ability to satisfy certain constraints. Similar to static analysis, symbolic
execution often involves building a search-efficient data structure, such as CFG, as well as extracting
facts and features from the input. However, unlike static analysis, the symbolic execution methods
run the code instead of analyzing its syntax. All the existing symbolic execution solutions surveyed
in this work employ the Z3 [19] SMT solver.

Some symbolic execution solutions use certain augmentations to the basic design by adding addi-
tional features. Oyente [111], teEther [96], SafePay [102], Artemis [151], andDEFECTCHECKER [52]
process the smart contract to build a CFG. Another augmentation observed in symbolic execution
solutions is the production of exploits (sample inputs revealing vulnerabilities), as can be seen in
teEther [96] and EthBMC [68]. Moreover, some symbolic execution methods perform a prelim-
inary analysis (preprocessing) for generating guidance data facilitating the symbolic execution.
SmarTest [140] guides symbolic execution with a language-based model in order to achieve higher
accuracy and reduce the rate of timeouts.

Fig. 5. Workflow of the symbolic execution core method.

5.3 Fuzzing Workflow
Fuzzing methods use various techniques for generating subsets of test inputs that could reveal
vulnerable execution paths in smart contracts. Fig. 6 shows how the fuzzing core method works in
smart contracts. Fuzzing tools perform iterative testing of a smart contract by generating test cases
and adjusting these cases via a feedback loop. The execution of smart contracts is performed by
the fuzzing engine, which is either a stand-alone code interpreter or an instrumented (i.e., modified
with a custom code) blockchain virtual machine. Fuzzing techniques allow to address the two
notorious problems associated with software testing — input ranges and path explosion. Even a
single parameter of a smart contract function might exhibit a virtually endless range of actual
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values, e.g., the 256-bit integer in Ethereum; so the goal of a fuzzing method is to pick input samples
that are likely to reveal vulnerabilities. The path explosion problem occurs when the user needs
to call a sequence of transactions. Even if the exact arguments are known in advance (which is
not always the case), the number of possible orders of transactions and other variable scenarios
“explodes” as the number of transactions in the sequence increases, which necessitates the use of
special techniques, such as pruning, by the fuzzing threat mitigation methods.
Similar to symbolic execution, some fuzzing methods also utilize guidance data for facilitating

test case generation. Confuzzius [66] performs a preprocessing in the form of taint analysis in order
to guide the fuzzing engine. Also, in addition to identifying a problem in a smart contract, it is
common for a fuzzing solution to deliver proof of a vulnerability in the form of a sample malicious
transaction or a series thereof, as we see in ReGuard [105], SoliAudit [103], and EthPloit [170].

Fig. 6. Workflow of the fuzzing core method.

5.4 Formal Analysis Workflow
Formal analysis methods convert smart contracts into formal representations and use automated
provers for deriving deterministic conclusions about the security properties of these smart contracts.
Fig. 7 depicts the workflow of the smart contract formal analysis core method. One important
component of a formal analysis solution is the fact extractor, which converts a smart contract
into a formal representation, usually in a form of a domain-specific language (DSL). The formal
representation is then delivered to an automated prover, such as Tamarin [117], along with some
specifications representing vulnerabilities or security properties. The prover then juxtaposes the
extracted facts with the provided properties to deliver a set of conclusions, which include compliance
and violation statements. The output of a formal analysis solution may be supplemented with
additional outputs. Specifically, some formal analysis solutions include the intermediate results in
the report, e.g., extracted semantics, as seen in KEVM [83]. Also, some solutions not only prove
existing theorems, but they also produce theorems based on certain specifications, such as theorems,
as we can see in Lolisa [164].

Fig. 7. Workflow of the formal analysis core method.
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5.5 Machine Learning Workflow
Machine learning methods extract features from smart contracts or smart contract transactions
and train models for classifying smart contracts based on the types of vulnerabilities discovered
in them. Fig. 8 shows the general workflow of smart contract machine learning-based threat
mitigation solutions. We discover that all the existing machine learning methods of smart contract
threat mitigation use supervised models, requiring a subset of labeled smart contract samples. The
workflow of a machine learning approach requires the data preprocessing (preparation) step, which
includes building a “clean” (uniform) dataset, creating training and testing samples, and performing
manual labeling (or using an existing one). The primary goal of the training step is to determine
the parameters of a chosen model. The goal of the testing step is to verify the robustness of the
model candidate. Once the model is trained and properly tested (e.g., using a K-fold method, as
observed in the evaluation part of SafelyAdministrated [87]), the model can detect vulnerabilities
or confirm the safety of the unlabeled contracts or smart contract transactions.

Feature extraction and model building are two major characteristics that describe machine learn-
ing threat mitigation solutions. Momeni et al. [118] deliver an ML model for detecting vulnerability
patterns in smart contracts, using an abstract syntax tree (AST) and control flow graph (CFG) for
feature extraction. ContractWard [156] approaches an ML-based detection of vulnerabilities in
smart contracts based on bigram features. ESCORT [110] is a machine learning smart contract
threat mitigation solution based on a deep neural network (DNN) with a semantic-based feature
extractor. AMEVulDetector [108] builds a semantic graph from the source code and applies deep
learning to building the vulnerability detection model.

Fig. 8. Workflow of the machine learning core method.

5.6 Execution Tracing Workflow
Execution tracing methods assess the security properties of smart contracts by exploring the
execution of transactions sent to a given smart contract or an externally owned account (in cases
when the Ethereum platform is targeted7). Fig. 9 depicts the workflow of execution tracing methods.
These solutions use transactions as their input. After that, the transactions are filtered to keep
only the ones associated with a specific account, specific smart contract, or a concrete action (e.g.,
attack). Next, the filtered transactions are executed by the instrumented blockchain virtual machine
(e.g., EVM). The instrumented code passively observes the execution of the given transactions
and produces a special data structure called execution traces. Formally, an execution trace is a
path in a control flow graph (CFG) of a smart contract that describes the execution of a specific

7Ethereum has two types of accounts: smart contract account and externally owned account (EOA). Both EOAs and smart
contract accounts can be referenced by their 160-bit public addresses.
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transaction (or a sequence of transactions). The execution traces are then analyzed to produce a
human-readable report.

EthScope [160] is a security analysis framework that detects suspicious smart contracts in three
steps: collecting related blockchain states, replaying transactions, and reporting data for manual
introspective analysis. Perez et al. [128] propose an automated execution tracing framework for
Ethereum for detecting both vulnerabilities and actual attacks exploiting these vulnerabilities. DE-
FIER [143] is a tool for the investigation of attack instances associated with Ethereum decentralized
applications (DApps), which use Ethereum transaction tracing. Horus [67] is an execution tracing
framework for the detection and investigation of attacks on smart contracts that use logic-based and
graph-based analyses of Ethereum transactions. Another execution tracing solution is E-EVM [126]
that performs emulation and visualization of smart contracts.

Fig. 9. Workflow of the execution tracing core method.

5.7 Code Synthesis Workflow
The code synthesis methods produce the source code or bytecode of a smart contract with or
without a template. The objective of code synthesis methods is to produce a smart contract resistant
to specific attacks or vulnerabilities. Fig. 10 shows the workflow of the code synthesis core method.
We observe that some code synthesis solutions produce code from specifications only; others require
a template to apply specifications to (e.g., ContractLarva [61]). Custom source code annotations
are an example of specifications, as we can see in Cecchetti et al. [48].
Some code synthesis solutions utilize language BNF grammars or custom code libraries (e.g.,

SafelyAdministrated [87] and OpenZeppelin Contracts [9]) to aid the process. The result of code
synthesis is a source code or a bytecode of a smart contract with specific security properties. In
addition, some threat mitigation solutions utilize the code synthesis core method to patch vulnerable
smart contracts on the bytecode level (e.g., SmartShield [172]).

Fig. 10. Workflow of the code synthesis core method.

5.8 Transaction Interception Workflow
A blockchain network is a set of peer-to-peer (P2P) nodes. In this type of workflow, we assume that
each node sustains the entire copy of the blockchain, i.e., we assume that the blockchain node is a
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full node. Furthermore, each node has a transaction pool, which is a queue of transactions-candidates
for addition to the blockchain. Transaction interception methods are dynamic approaches that read
submitted transactions from the transaction pool of the blockchain node and prevent the node
from including unsafe transactions in the blockchain. Fig. 11 shows the general workflow of the
transaction interception core method. Transaction interception methods employ the blockchain
P2P node instrumentation, which means that there is a custom code injected into the routines
responsible for transaction ordering or smart contract execution. All the transaction interception
solutions surveyed in this work also produce a human-readable report of their operation, which is
reasonable: deleting transactions from the pool is a deep intervention into the blockchain network
protocol, so it must leave a log of the action.
Transaction interception solutions, although not numerous, exhibit a diverse spectrum of ap-

proaches. SODA [53] is a transaction-interception framework for EVM-compatible platforms that
allows users to develop custom apps for dynamic defense against attacks. ÆGIS [65] is another trans-
action interception solution that uses a committee of voting security experts to create and approve
attack patterns that steer transaction interception by instrumented nodes. Another transaction
interception solution is EVM* [113], which monitors overflows and timestamp bugs.

Fig. 11. Workflow of the transaction interception core method.

6 VULNERABILITY COVERAGE
In this section, we compare threat mitigation solutions from the perspective of their ability to
address the known smart contract vulnerabilities. First, we select all the solutions that explicitly
declare the list of vulnerabilities they cover, 38 total, and translate the information about these
vulnerabilities into the model adopted by the popular SWC Registry [18]. Then we build the
vulnerability map, presented in Table 3, which juxtaposes the threat mitigation methods by their
ability to address the 37 known smart contract vulnerabilities. The first column of the table has
the names of the threat mitigation solutions and corresponding references; if the names are not
available, we use the authors instead. The next 37 columns each correspond to the numbered SWC
Registry vulnerabilities. Thus, the table constitutes a compact map showing which vulnerabilities
are supported (i.e., defended against), which ones are partially supported, and which ones are not
supported at all for each of the 38 threat mitigation methods.

The challenge of this approach lies in the fact that different threat mitigation solutions refer to
the same vulnerabilities using different names. Moreover, some solutions refer to a group of SWC
vulnerabilities as a single weakness. Rodler et al. [132] declare the coverage of three vulnerabilities,
which correspond to the single reentrancy vulnerability in the SWC Registry, viz., SWC-107 [13].
Some other solutions do the opposite: they break down a single SWC vulnerability into several
fine-grained subgroups. For instance, the SWC-100 [12] and SWC-108 [14] vulnerabilities are often
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treated as a single vulnerability called the “private modifier”, as we can see in SmartCheck [145]
and in SolidityCheck [168].

Table 3 unambiguously demonstrates that different vulnerabilities exhibit unequal attention from
different threat mitigation solutions. For example, 24 solutions declare defense against reentrancy
(SWC-107 [13]), whereas none of the solutions declare defense against shadowing the state variables
(SWC-119 [15]) and RTL-override control character (SWC-130 [17]). Remarkably, we observe that
both of the vulnerabilities exhibiting close attention by the existing threat mitigation solutions as
well as the ones overlooked by these solutions are often particularly challenging to pinpoint.

Lessons learned: By studying the vulnerability coverage by smart contract threat miti-
gation solutions, we discovered that some vulnerabilities are covered by multiple threat
mitigation solutions. In contrast, many vulnerabilities are not covered by any solutions.

7 TRENDS AND PERSPECTIVES
In this section, we discuss the emerging trends in smart contract threat mitigation (§7.1, §7.2,
§7.3), the overlooked types of smart contracts (§7.4), and the necessity for data-driven studies in
smart contract security (§7.5). To avoid speculations and opinion-based statements, we only make
inferences based on our survey data and other strong evidence.

Lessons learned: By exploring trends and perspectives associated with smart contract
threat mitigation solutions, we discovered that there is a substantial room for future work
despite the abundance of existing studies.

7.1 Dynamic Transaction Interception
Most smart contract threat mitigation solutions use predominantly static code-based detection
approaches. However, we note that the focus of the research community is shifting in three major
directions:
(1) static approaches are shifting into the dynamic paradigm;
(2) the code based methods are shifting into the transaction-based ones; and
(3) the detection methods are shifting towards verification.

Following these observations, it would be reasonable to suppose that the next generation of smart
contract threat mitigation solutions will likely continue exploring the primarily overlooked area of
vulnerability-agnostic dynamic transaction interception. We believe that there are two significant
reasons these methods are particularly promising: they are blockchain state-aware and can address
zero-day attacks.
To demonstrate the blockchain state awareness, consider the Ethereum smart contract Foo in

Fig. 12a, which transfers cryptocurrency funds to a smart contract Bar (Fig. 12b). Bar is deployed
on Ethereum Mainnet8, but not on Ropsten testnet9. Moreover, Bar does not have any payable
functions10, and therefore it cannot accept incoming Ether. As a result, the transfer in line 6 (Fig. 12a)
will fail, reverting the entire transaction — but only on Mainnet, not on Ropsten. Even if the states
of all the variables of contract Foo on Ropsten are identical to their counterparts on Mainnet, the
8Ethereum Mainnet is the major production Ethereum network supporting the Ether cryptocurrency.
9Testnets are alternative blockchain networks utilized for development and experiments. Testnets normally execute the
same protocols as production networks, but the test cryptocurrency on the testnet does not have any market value.
10A payable function allows to transfer (deposit) cryptocurrency to the smart contract.
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Table 3. Summary of the defense tools against smart contract vulnerabilities.
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Oyente [111] # # # # # # #  # # # # #   #  # # # # # # # # # # # # # # # # # # # #

Securify [149] # # # #  G#   # # # # # #  # # # # # # # #   # # # # # # # # # # # #

Mythril [120] #  # #  #   # #  #  #  #  # G# # # # # # # # # # # # # # # # # # #

Sereum [132] # # # # # # #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Vandal [44] # # # # #    # # # # # # #  # #  # # # # # # # # # # # # # # # G# # #

sGuard [122] #  # # # # #  # # # # # # #  # # # # # # # # # # # # # # # # # # # # #

ZEUS [92] #  # # # # #  # # # # # #    # # # # # # # # # # # # # # # # #  # #

ConFuzzius [66] #  # #  #   # #  #  #  #  # G# # # # # # # # # # # # # # # # # # #

VeriSmart [141] #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

SmarTest [140] #  # # #   # # #  # # # # # # # # # # # # G# # # # # # # # # # # # # #

Maian [125] # # # # #   # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

ECFChecker [78] # # # # # # #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Osiris [147] #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

FSolidM [115] # # # # # # #  # # # # # #  # # # # # # # # # # # # # # # # # # # # # #

ContractFuzzer [89] # # # #  # #  # # # #  # # #  # # # # # # # # # # # # # # # # #  # #

MadMax [74] # # # # # # # # # # # # # # # # # # # # # # # # # #  #  # # # # #  # #

SmartCheck [145]    #  # #   # # # #  #   # # # # # # # # # # # # # # #  # # # #

ReGuard [105] # # # # # # #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

ILF [81] # # # #    # # # # #  # # #  # # # # # # # # # # # # # # # # # # # #

NPChecker [155] # # # #  # #  # # # # # #  #  # # # # # # # # # # # # # # # # # # # #

EasyFlow [72] #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Vultron [154] #  # #  # #  # # # # # # # # # # # # # # # # # #  # # # # # # # # # #

SoidityCheck [168]   # #  # # #  # # # #  #   #  # # # # # # # # # # # # # # # # # #

GasFuzz [112]   # # # # # #  # # # # # # # # # # # # # # # # #  #  # # # # # # # #

SolAnalyzer [22] #  # #  # # # # # # # # # #   # # # # # # # # #  #  # # # # # # # #

GasTap [24] # # # # # # # # # # # # # # # # # # # # # # # # # #  #  # # # # #  # #

Momeni et al. [118] #  # #  # #    # # # # #  # # # # # # # # # # # # # # # # # # # # #

Harvey [162] # # # # # # # # # #  # # # # # # # # # # # # #  # # # # # # # # # # # #

sFuzz [123] #  # #  # #  # # # #  # # #  # # # # # # # # #  # # # # # # # # # #

Artemis [151] # # # # # # # # # # # #  # # #  # # # # # # # # #  # # # # # # # # # #

EthPloit [170] # # # # G# G# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  

EthScope [160] #  # # # # #  # # # # # # # # # # # #  # # # # # # # # # # # # # # # #

RA [57] # # # # # # #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

SeRIF [47] # # # # # # #  # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

Huang et al. [86] #  # #  # #  # # # # # # # # # # # #  # # # # # # # # # # # # # # # #

DefectChecker [52] # # # #   #  # # # # # G#  #  # # # # # # # # # # # # # # # # # # # #

ExGen [91] #  # # # #  G# # # # #  # # # # # # # # # # # # # # # # # # # # # # # #

MythX [7] #  # #     #   #   #   # # #  # # #  # #   # # # # #  # #

# — full support;G# — partial support;# — no support.
† Available at https://swcregistry.io/ and https://github.com/SmartContractSecurity/SWC-registry
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1 contract Foo {

2 function deposit () public payable {}

3 function withdraw () public {

4 address admin =

5 0xEc125A03C6F9E75BEB1A420e94d655B2f1352584;

6 payable(admin).transfer (1000000000 wei);

7 payable(msg.sender)

8 .transfer(address(this).balance);

9 }

10 }

(a) smart contract Foo

1 contract Bar {

2 constructor () public { }

3 }

(b) smart contract Bar

Fig. 12. A pair of smart contracts demonstrating the importance of the block state.

behavior of the withdraw() function will be different. This example demonstrates that the state
of blockchain is an important factor that determines the outcome of smart contract execution.
Unlike the static ones, dynamic transaction interception methods consider the current state of the
blockchain, thereby preventing situations such as those illustrated in this example.

A recent study by Zhou et al. [174] reveals that novel (zero-day) smart contract attacks constantly
appear on Ethereum. This trend creates a major challenge: how to defend against attacks we do not
yet know about? One way to address this problem is to utilize the prevention methods that enforce
security properties instead of searching for flaws, attacks, and vulnerabilities. Unfortunately, the
security properties in static prevention solutions are tightly associated with known attacks and
vulnerabilities. ECFChecker (STM-009) [78] is a prevention method that verifies the “callback-free”
property that ensures the safety of a smart contract from the family of reentrancy vulnerabilities.
These properties, however, might not be universal enough to protect the smart contract from new
vulnerabilities. One possible way to fill this gap is to verify the properties associated with expected
outcomes of smart contract functions instead of vulnerability-related properties.

7.2 AI-driven Security
We identify another recent salient trend in smart contract threat mitigation solutions — AI-driven
approaches involving machine learning. There are two major reasons why these approaches are
capable of making a significant contribution: they allow to embrace the expressiveness of modern
smart contracts, and also these approaches have been proven successful in securing other domains
of computing [1, 35].

The expressiveness of smart contracts limits the capacity of static and formal analytical methods.
Most modern smart contracts are Turing-complete, which allows them to implement sophisticated
algorithms using high-level programming languages, such as Solidity and Rust. However, the
smart contract expressiveness is a double-edged sword, as it creates a virtually infinite number of
coding possibilities, which are very hard to embrace by static methods that predominantly rely
upon patterns. Although machine learning methods also rely upon some patterns, recent machine
learning models (e.g., deep neural network based) could explore much higher-dimensional feature
spaces than static approaches.

In the past few years, we have been observing a growing trend of using AI and machine learning
for security purposes, such as malware detection [134]. Although the machine learning methods
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for smart contract threat mitigation have not yet gained considerable popularity, the flexibility and
universality of these methods will likely play an important role in smart contract defense.

7.3 Human-machine Interaction in Smart Contracts
Smart contracts are often opposed to traditional user software based on the idea of replacing
human-based decisions with a deterministic algorithm. However, such a vision is overly idealistic
because a human is an integral part of a smart contract lifecycle. Specifically, humans write the
source code of smart contracts. Even in the case of automatically synthesized smart contracts, we
still require sufficient human intervention for developing templates and specifications. Testing
a smart contract also requires a human, even for unit tests, which are developed by a human
developer too. The security audit of a smart contract is also impossible without human judgment
despite a wide variety of auditing tools available. Finally, interaction with smart contracts is always
initiated by a user, regardless of the degree of automation. However, the impact of a human on the
security of smart contracts is not sufficiently studied.

The study of human-machine interaction in smart contracts is limited by exploring honeypots and
revealing a potential for some social engineering attacks. Honeypots are malicious smart contracts
that entrap naive attackers who try to exploit a known vulnerability in a smart contract, making
honeypots a class of social engineering attacks, i.e., attacks targeting humans as the major attack
vector. HoneyBadger [148] is the automated tool that identifies such honeypots. Ivanov et al. [88]
expand the scope of social engineering attacks with two more categories: address manipulation
and homograph. However, the two efforts mentioned above do not embrace the entire complexity
of human-smart contract interaction.
One unexplored area of human-smart contract interaction is the security implication of the

growing population of smart contract users who do not have a deep knowledge of the working
mechanics of the blockchain and smart contracts. Another security-sensitive aspect of human-smart
contract interaction is the assumption that the decentralization of blockchain implies decentralized
applications (i.e., smart contracts) enabled by that blockchain. Specifically, many smart contracts
implement routines (e.g, the Ownable parent class in OpenZeppelin Contracts [9]) that grant
excessive power to specified accounts. This excessive power may be abused by the owner or stolen
by the attacker [87] with potentially detrimental consequences. These two examples show the
importance of studying human-smart contract interaction from the security perspective, and we
envision many future studies in this area.

7.4 Non-Ethereum Contracts
As it is revealed in §4, the vast majority of the existing smart contract threat mitigation methods
target the smart contracts on the Ethereum platform. However, in recent years, the world has
been experiencing major growth in the popularity of non-Ethereum smart contract platforms,
such as NEO [8], Hyperledger Fabric [27], EOS [3], and others. Our analysis of the evolution of
smart contract threat mitigation solutions clearly shows the growing attention by the research
community to the security of non-Ethereum smart contracts. One reason for such disproportional
attention to Ethereum, compared to other platforms, is that Ethereum is an open-data environment
with the second-largest market capitalization after Bitcoin, so it is both convenient and important
to study [127]. However, these choices come at the expense of overlooking other major smart
contract platforms. At the same time, our analysis shows that it is often impossible to extrapolate
the lessons learned in Ethereum to the other platforms. Many of the existing vulnerabilities and
other security issues are directly related to the design of the Ethereum platform or the syntax of
Solidity — the most popular programming language for Ethereum smart contracts. Therefore, we
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expect increased attention to non-Ethereum platforms in the future development of smart contract
threat mitigation research.

7.5 Large-scale Measurements
Although blockchain is an open-data environment, there are multiple facts and statistics that we are
unaware of. One reason is that a large amount of blockchain-related data, such as failed transactions
and ERC20 token prices, is stored outside of the blockchain. Moreover, the growing popularity of
Decentralized Finance (DeFi) further intensified the exchange of off-chain data [5, 6]. As a result,
we have seen the growing amounts of on-chain and off-chain data that have not been analyzed
from a security perspective.
Yet, the existing security-related measurement studies [65, 128, 148, 174] of smart contracts do

not give answers to all the important questions. Specifically, we identify two areas important for
the security of smart contracts in which there is no systematic data:
(1) the measurement and flow of the market value of non-cryptocurrency blockchain assets (e.g.,

ERC20 tokens);
(2) study of the purchases and sales of cryptocurrency and tokens by the crypto exchanges,

mining rewards, and crypto money laundering.
Such data would be very helpful for applying weights to attacks and vulnerabilities based on the
actual value flow of the smart contract assets.

8 CONCLUSION
We surveyed the full spectrum of smart contract threat mitigation solutions in this work. We pre-
sented a general taxonomy for the classification of such solutions, which applies to today’s methods
and is suitable for future methods, even if new paradigms, blockchain platforms, or vulnerabilities
appear. Using this taxonomy, we classified 133 existing smart contract threat mitigation solutions.
We identified eight distinct core defense methods employed by the existing solutions and developed
synthesized workflows of these core methods. We studied the ability of the existing smart contract
threat mitigation solutions to address the known vulnerabilities. We conducted an evidence-based
evolutionary study of smart contract threat mitigation solutions to outline trends and perspectives.
To further benefit the community of smart contract security researchers, users, and developers, we
deployed an open-source, regularly updated online registry for smart contract threat mitigation at
https://stmregistry.io/.
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